A multivariate normal distribution in three variables. It has probability
density function
![P(x_1,x_2,x_3)=(e^(-w/[2(rho_(12)^2+rho_(13)^2+rho_(23)^2-2rho_(12)rho_(13)rho_(23)-1)]))/(2sqrt(2)pi^(3/2)sqrt(1-(rho_(12)^2+rho_(13)^2+rho_(23)^2)+2rho_(12)rho_(13)rho_(23))),](/images/equations/TrivariateNormalDistribution/NumberedEquation1.svg) |
(1)
|
where
![w=x_1^2(rho_(23)^2-1)+x_2^2(rho_(13)^2-1)+x_3^2(rho_(12)^2-1)+2[x_1x_2(rho_(12)-rho_(13)rho_(23))+x_1x_3(rho_(13)-rho_(12)rho_(23))+x_2x_3(rho_(23)-rho_(12)rho_(13))].](/images/equations/TrivariateNormalDistribution/NumberedEquation2.svg) |
(2)
|
The standardized trivariate normal distribution takes unit variances and
. The quadrant probability in this special case
is then given analytically by
 |
(3)
|
(Rose and Smith 1996; Stuart and Ord 1998; Rose and Smith 2002, p. 231).
See also
Bivariate Normal Distribution,
Multivariate Normal Distribution,
Normal Distribution
Explore with Wolfram|Alpha
References
Rose, C. and Smith, M. D. "The Multivariate Normal Distribution." Mathematica J. 6, 32-37, 1996.Rose,
C. and Smith, M. D. "The Trivariate Normal." §6.B A in Mathematical
Statistics with Mathematica. New York: Springer-Verlag, pp. 226-228,
2002.Stuart, A.; and Ord, J. K. Kendall's
Advanced Theory of Statistics, Vol. 1: Distribution Theory, 6th ed.
New York: Oxford University Press, 1998.Referenced on Wolfram|Alpha
Trivariate Normal Distribution
Cite this as:
Weisstein, Eric W. "Trivariate Normal Distribution."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TrivariateNormalDistribution.html
Subject classifications