TOPICS
Search

Triply Periodic Function


A triply periodic function is a function having three distinct periods. Jacobi (1835) proved that a single-valued univariate function cannot have more than two distinct periods (Boyer and Merzbach 1991, p. 525), thus showing that elliptic functions are the most general multiply periodic single-valued functions possible in a single variable.


See also

Doubly Periodic Function, Elliptic Function, Periodic Function, Singly Periodic Function

Explore with Wolfram|Alpha

References

Boyer, C. B. and Merzbach, U. C. A History of Mathematics, 2nd ed. New York: Wiley, 1991.Jacobi, C. G. J. J. für Math. 13, 55-56, 1835. Reprinted in Gesammelte Werke, Vol. 2, 2nd ed. Providence, RI: Amer. Math. Soc., pp. 25-26, 1969.

Referenced on Wolfram|Alpha

Triply Periodic Function

Cite this as:

Weisstein, Eric W. "Triply Periodic Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TriplyPeriodicFunction.html

Subject classifications