Subresultants can be viewed as a generalization of resultants, which are the product of the pairwise differences of the roots of polynomials. Subresultants are the most commonly used tool to compute the resultant or greatest common divisor of two polynomials with coefficients in an integral ring. Subresultants for a few simple pairs of polynomials include
(1)
| |||
(2)
| |||
(3)
|
The principal subresultants of two polynomials can be computed using the Wolfram Language function Subresultants[poly1, poly2, var]. The first subresultants of two polynomials and , both with leading coefficient one, are zero when and have common roots.