Given a polynomial
(1)
of degree
with roots ,
, ..., and a polynomial
(2)
of degree
with roots ,
, ..., , the resultant , also denoted and also called the eliminant, is defined by
(3)
(Trott 2006, p. 26).
Amazingly, the resultant is also given by the determinant
of the corresponding Sylvester matrix .
Kronecker gave a series of lectures on resultants during the summer of 1885 (O'Connor and Robertson 2005).
An important application of the resultant is the elimination of one variable from a system of two polynomial equations (Trott 2006, p. 26).
The resultant of two polynomials can be computed using the Wolfram Language function Resultant [poly1 ,
poly2 , var ]. This command accepts the following methods: Automatic ,
SylvesterMatrix , BezoutMatrix , Subresultants , and Modular ,
where the optimal choice depends dramatically on the concrete polynomial pair under
consideration and typically requires some experimentation. For high-order univariate
polynomials over the integers, the option setting Modular is frequently
the fastest (Trott 2006, p. 29).
There exists an algorithm similar to the Euclidean
algorithm for computing resultants (Pohst and Zassenhaus 1989).
Resultants for a few simple pairs of polynomials include
Given and , then
(7)
is a polynomial of degree , having as its roots all sums of
the form .
See also Gröbner Basis ,
Multivariate Resultant ,
Polynomial Discriminant ,
Resolvent ,
Subresultant ,
Sylvester Matrix
Explore with Wolfram|Alpha
References Apostol, T. M. "Resultants of Cyclotomic Polynomials." Proc. Amer. Math. Soc. 24 , 457-462, 1970. Apostol, T. M.
"The Resultant of the Cyclotomic Polynomials and ." Math. Comput. 29 , 1-6, 1975. Bikker,
P. and Uteshev, A. Y. "On the Bézout Construction of the Resultant."
J. Symb. Comput. 28 , 45-88, 1999. Bykov, V.; Kytmanov,
A.; Lazman, M.; and Passare, M. (Eds.). Elimination
Methods in Polynomial Computer Algebra. Dordrecht, Netherlands: Kluwer, 1998. Childs,
L. A
Concrete Introduction to Higher Algebra. New York: Springer-Verlag, 1992. Cohen,
H. "Resultants and Discriminants." §3.3.2 in A
Course in Computational Algebraic Number Theory. New York: Springer-Verlag,
pp. 119-123, 1993. Cohen, J. S. Computer
Algebra and Symbolic Computation: Mathematical Methods. Wellesley: A K Peters,
2003. Davenport, J. H.; Siret, Y.; and Tournier, E. Computer
Algebra: Systems and Algorithms for Algebraic Computations. London: Academic
Press, 1993. Gelfand, I. M.; Kapranov, M.; and Zelevinsky, A. Discriminants,
Resultants and Multidimensional Resultants. Boston: Birkhäuser, 1994. Maculay,
F. S. The
Algebraic Theory of Modular Systems. Cambridge: Cambridge University Press,
1916. O'Connor, J. J. and Robertson, E. F. "Henry Burchard
Fine." August 2005. http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Fine_Henry.html . Pohst,
M. and Zassenhaus, H. Algorithmic
Algebraic Number Theory. Cambridge, England: Cambridge University Press,
1989. Prasalov, V. V. Polynomials.
Berlin: Springer, 2004. Simpson, J. A. and Weiner, E. S. C.
(Preparers). The
Compact Oxford English Dictionary, 2nd ed. Oxford, England: Clarendon Press,
p. 503, 1992. Sturmfels, B. In Applications
of Computational Algebraic Geometry. American Mathematical Society Short Course January
6-7, 1997 San Diego, California (Ed. D. A. Cox and B. Sturmfels).
Providence, RI: Amer. Math. Soc., 1997. Trott, M. The
Mathematica GuideBook for Symbolics. New York: Springer-Verlag, pp. 26-29,
2006. http://www.mathematicaguidebooks.org/ . Wagon,
S. Mathematica
in Action. New York: W. H. Freeman, p. 348, 1991. Wee,
C. E. and Goldman, R. N. IEEE Comput. Graphics Appl. No. 1,
69, 1995. Wee, C. E. and Goldman, R. N. IEEE Comput. Graphics
Appl. No. 3, 60, 1995. Referenced on Wolfram|Alpha Resultant
Cite this as:
Weisstein, Eric W. "Resultant." From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/Resultant.html
Subject classifications