The most common "sine integral" is defined as
 |
(1)
|
is the function implemented in the
Wolfram Language as the function SinIntegral[z].
is an entire
function.
A closed related function is defined by
where
is the exponential integral, (3)
holds for
,
and
 |
(6)
|
The derivative of
is
 |
(7)
|
where
is the sinc function and the integral
is
 |
(8)
|
A series for
is given by
 |
(9)
|
(Havil 2003, p. 106).
It has an expansion in terms of spherical
Bessel functions of the first kind as
![Si(2x)=2xsum_(n=0)^infty[j_n(x)]^2](/images/equations/SineIntegral/NumberedEquation6.svg) |
(10)
|
(Harris 2000).
The half-infinite integral of the sinc function
is given by
 |
(11)
|
To compute the integral of a sine function times a power
 |
(12)
|
use integration by parts. Let
 |
(13)
|
 |
(14)
|
so
 |
(15)
|
Using integration by parts again,
 |
(16)
|
 |
(17)
|
![intx^(2n)sin(mx)dx=-1/mx^(2n)cos(mx)
+(2n)/m[1/mx^(2n-1)cos(mx)-(2n-1)/mintx^(2n-2)sin(mx)dx]
=-1/mx^(2n)sin(mx)+(2n)/(m^2)x^(2n-1)sin(mx)-((2n)(2n-1))/(m^2)intx^(2n-2)sin(mx)dx
=-1/mx^(2n)cos(mx)+(2n)/(m^2)x^(2n-1)sin(mx)+...+((2n)!)/(m^(2n))intx^0sin(mx)dx
=-1/mx^(2n)cos(mx)+(2n)/(m^2)x^(2n-1)sin(mx)+...-((2n)!)/(m^(2n+1))cos(mx)
=cos(mx)sum_(k=0)^n(-1)^(k+1)((2n)!)/((2n-2k)!m^(2k+1))x^(2n-2k)
+sin(mx)sum_(k=1)^n(-1)^(k+1)((2n)!)/((2k-2n-1)!m^(2k))x^(2n-2k+1).](/images/equations/SineIntegral/NumberedEquation14.svg) |
(18)
|
Letting
,
so
![intx^(2n)sin(mx)dx
=cos(mx)sum_(k=0)^n(-1)^(n-k+1)((2n)!)/((2k)!m^(2n-2k+1))x^(2k)+sin(mx)sum_(k=0)^(n-1)(-1)^(n-k+1)((2n)!)/((2k-1)!m^(2n-2k))x^(2k+1)
=(-1)^(n+1)(2n)![cos(mx)sum_(k=0)^n((-1)^k)/((2k)!m^(2n-2k+1))x^(2k)+sin(mx)sum_(k=1)^n((-1)^(k+1))/((2k-3)!m^(2n-2k+2))x^(2k-1)].](/images/equations/SineIntegral/NumberedEquation15.svg) |
(19)
|
General integrals of the form
 |
(20)
|
are related to the sinc function and can be computed
analytically.
See also
Chi,
Cosine Integral,
Exponential Integral,
Nielsen's
Spiral,
Shi,
Sinc Function
Related Wolfram sites
http://functions.wolfram.com/GammaBetaErf/SinIntegral/
Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). "Sine and Cosine Integrals." §5.2 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 231-233, 1972.Arfken, G. Mathematical
Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 342-343,
1985.Harris, F. E. "Spherical Bessel Expansions of Sine, Cosine,
and Exponential Integrals." Appl. Numer. Math. 34, 95-98, 2000.Havil,
J. Gamma:
Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 105-106,
2003.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.;
and Vetterling, W. T. "Fresnel Integrals, Cosine and Sine Integrals."
§6.79 in Numerical
Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 248-252, 1992.Spanier, J. and Oldham,
K. B. "The Cosine and Sine Integrals." Ch. 38 in An
Atlas of Functions. Washington, DC: Hemisphere, pp. 361-372, 1987.Referenced
on Wolfram|Alpha
Sine Integral
Cite this as:
Weisstein, Eric W. "Sine Integral." From
MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SineIntegral.html
Subject classifications