TOPICS
Search

Shi


ShiReal
Min Max
Powered by webMathematica
ShiReImAbs
Min Max
Re
Im Powered by webMathematica

The hyperbolic sine integral, often called the "Shi function" for short, is defined by

 Shi(z)=int_0^z(sinht)/tdt.
(1)

The function is implemented in the Wolfram Language as the function SinhIntegral[z].

It has Maclaurin series

Shi(z)=sum_(n=0)^(infty)(x^(2n+1))/((2n+1)^2(2n)!)
(2)
=z+1/(18)z^3+1/(600)z^5+1/(35280)z^7+1/(326592)z^9+...
(3)

(OEIS A061079).

It has derivative

 (dShi(z))/(dz)=(sinhz)/z
(4)

and indefinite integral

 intShi(z),dz=zShi(z)-coshz.
(5)

See also

Chi, Cosine Integral, Sine Integral, Sinhc Function

Related Wolfram sites

http://functions.wolfram.com/GammaBetaErf/SinhIntegral/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Sine and Cosine Integrals." §5.2 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 231-233, 1972.Sloane, N. J. A. Sequence A061079 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Shi

Cite this as:

Weisstein, Eric W. "Shi." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Shi.html

Subject classifications