TOPICS
Search

Schröder-Bernstein Theorem


The Schröder-Bernstein theorem for numbers states that if

 n<=m<=n,

then m=n. For sets, the theorem states that if there are injections of the set A into the set B and of B into A, then there is a bijective correspondence between A and B (i.e., they are equipollent).


See also

Bijection, Cardinal Comparison, Equipollent, Injection, Trichotomy Law

Explore with Wolfram|Alpha

References

Bernstein, F. "Untersuchungen aus der Mengenlehre." Ph.D. thesis. Göttingen, Germany, 1901.Bernstein, F. "Untersuchungen aus der Mengenlehre." Math. Ann. 61, 117-155, 1905.Schröder, E. "Ueber zwei Definitionen der Endlichkeit und G. Cantor'sche Sätze." Nova Acta Academiae Caesareae Leopoldino-Carolinae (Halle a.d. Saale) 71, 303-362, 1898.Schröder, E. "Die selbständige Definition der Mächtigkeiten 0, 1, 2, 3 und die explicite Gleichzahligkeitsbedingung." Nova Acta Academiae Caesareae Leopoldino-Carolinae (Halle a.d. Saale) 71, 365-376, 1898.

Referenced on Wolfram|Alpha

Schröder-Bernstein Theorem

Cite this as:

Weisstein, Eric W. "Schröder-Bernstein Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Schroeder-BernsteinTheorem.html

Subject classifications