TOPICS
Search

Equipollent


Two statements in logic are said to be equipollent if they are deducible from each other.

Two sets A and B are said to be equipollent iff there is a one-to-one correspondence (i.e., a bijection) from A onto B (Moore 1982, p. 10; Rubin 1967, p. 67; Suppes 1972, p. 91).

The term equipotent is sometimes used instead of equipollent.


See also

Bijective

Explore with Wolfram|Alpha

References

Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.

Referenced on Wolfram|Alpha

Equipollent

Cite this as:

Weisstein, Eric W. "Equipollent." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Equipollent.html

Subject classifications