Let be a Euclidean space,
be the dot product, and denote the reflection in
the hyperplane
by
where
Then a subset
of the Euclidean space
is called a root system in
if:
1. is finite, spans
, and does not contain 0,
2. If , the reflection
leaves
invariant, and
3. If ,
then
.
The Lie algebra roots of a semisimple Lie algebra are a root system, in a real subspace of the dual
vector space to the Cartan subalgebra. In
this case, the reflections
generate the Weyl group, which is the symmetry group
of the root system.