TOPICS
Search

Riemann Integral


The Riemann integral is the definite integral normally encountered in calculus texts and used by physicists and engineers. Other types of integrals exist (e.g., the Lebesgue integral), but are unlikely to be encountered outside the confines of advanced mathematics texts. In fact, according to Jeffreys and Jeffreys (1988, p. 29), "it appears that cases where these methods [i.e., generalizations of the Riemann integral] are applicable and Riemann's [definition of the integral] is not are too rare in physics to repay the extra difficulty."

The Riemann integral is based on the Jordan measure, and defined by taking a limit of a Riemann sum,

int_a^bf(x)dx=lim_(maxDeltax_k->0)sum_(k=1)^(n)f(x_k^*)Deltax_k
(1)
intintf(x,y)dA=lim_(maxDeltaA_k->0)sum_(k=1)^(n)f(x_k^*,y_k^*)DeltaA_k
(2)
intintintf(x,y,z)dV=lim_(maxDeltaV_k->0)sum_(k=1)^(n)f(x_k^*,y_k^*,z_k^*)DeltaV_k,
(3)

where a<=x<=b and x_k^*, y_k^*, and z_k^* are arbitrary points in the intervals Deltax_k, Deltay_k, and Deltaz_k, respectively. The value maxDeltax_k is called the mesh size of a partition of the interval [a,b] into subintervals Deltax_k.

As an example of the application of the Riemann integral definition, find the area under the curve y=x^r from 0 to a. Divide (0,a) into n segments, so Deltax_k=a/n=h, then

f(x_1)=f(0)=0
(4)
f(x_2)=f(Deltax_k)=h^r
(5)
f(x_3)=f(2Deltax_k)=(2h)^r.
(6)

By induction

 f(x_k)=f([k-1]Deltax_k)=[(k-1)h]^r=h^r(k-1)^r,
(7)

so

 f(x_k)Deltax_k=h^(r+1)(k-1)^r
(8)
 sum_(k=1)^nf(x_k)Deltax_k=h^(r+1)sum_(k=1)^n(k-1)^r.
(9)

For example, take r=2.

 sum_(k=1)^nf(x_k)Deltax_k=h^3sum_(k=1)^n(k-1)^2 
=h^3(sum_(k=1)^nk^2-2sum_(k=1)^nk+sum_(k=1)^n1) 
=h^3[(n(n+1)(2n+1))/6-2(n(n+1))/2+n],
(10)

so

I=lim_(n->infty)sum_(k=1)^(n)f(x_k^*)Deltax_k=lim_(n->infty)sum_(k=1)^(n)f(x_k)Deltax_k
(11)
=lim_(n->infty)h^3[(n(n+1)(2n+1))/6-2(n(n+1))/2+n]
(12)
=a^3lim_(n->infty)[(n(n+1)(2n+1))/(6n^3)-(n(n+1))/(n^3)+n/(n^3)]
(13)
=1/3a^3.
(14)

Riemann integrals can be computed only for proper integrals.


See also

Contour Integral, Definite Integral, Improper Integral, Integral, Jordan Measure, Proper Integral, Riemann Sum

Explore with Wolfram|Alpha

References

Ferreirós, J. "The Riemann Integral." §5.1.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Basel, Switzerland: Birkhäuser, pp. 150-153, 1999.Jeffreys, H. and Jeffreys, B. S. "Integration: Riemann, Stieltjes." §1.10 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 26-36, 1988.Kestelman, H. "Riemann Integration." Ch. 2 in Modern Theories of Integration, 2nd rev. ed. New York: Dover, pp. 33-66, 1960.

Referenced on Wolfram|Alpha

Riemann Integral

Cite this as:

Weisstein, Eric W. "Riemann Integral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RiemannIntegral.html

Subject classifications