TOPICS
Search

Reciprocal Multifactorial Constant


The sum of reciprocal multifactorials can be given in closed form by the beautiful formula

m(n)=sum_(n=0)^(infty)1/(n!...!_()_(k))
(1)
=1+(e^(1/n))/nsum_(k=1)^(n)n^(k/n)gamma(k/n,1/n)
(2)
=(e^(1/n))/n[n+sum_(k=1)^(n-1)n^(k/n)gamma(k/n,1/n)],
(3)

where gamma(a,x) is a lower incomplete gamma function (E. W. Weisstein, Aug. 6, 2008).

This gives the special cases

m(2)=sqrt(e)[1+sqrt(pi/2)erf(1/2sqrt(2))]
(4)
m(3)=1/3e^(1/3)[3+3^(1/3)gamma(1/3,1/3)+3^(2/3)gamma(2/3,1/3)].
(5)

See also

Multifactorial

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Reciprocal Multifactorial Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ReciprocalMultifactorialConstant.html

Subject classifications