TOPICS
Search

Incomplete Gamma Function


The "complete" gamma function Gamma(a) can be generalized to the incomplete gamma function Gamma(a,x) such that Gamma(a)=Gamma(a,0). This "upper" incomplete gamma function is given by

 Gamma(a,x)=int_x^inftyt^(a-1)e^(-t)dt.
(1)

For a an integer n

Gamma(n,x)=(n-1)!e^(-x)sum_(k=0)^(n-1)(x^k)/(k!)
(2)
=(n-1)!e^(-x)e_(n-1)(x),
(3)

where e_n(x) is the exponential sum function. It is implemented as Gamma[a, z] in the Wolfram Language.

The special case of x=-1 can be expressed in terms of the subfactorial !n as

 Gamma(n,-1)=e!(n-1).
(4)

The incomplete gamma function Gamma(0,x) has continued fraction

 Gamma(0,x)=(e^(-x))/(x+1-1/(x+3-4/(x+5-9/(x+7+...))))
(5)

(Wall 1948, p. 358).

The lower incomplete gamma function is given by

gamma(a,x)=int_0^xt^(a-1)e^(-t)dt
(6)
=a^(-1)x^ae^(-x)_1F_1(1;1+a;x)
(7)
=a^(-1)x^a_1F_1(a;1+a;-x),
(8)

where _1F_1(a;b;x) is the confluent hypergeometric function of the first kind. For a an integer n,

gamma(n,x)=(n-1)!(1-e^(-x)sum_(k=0)^(n-1)(x^k)/(k!))
(9)
=(n-1)![1-e^(-x)e_(n-1)(x)].
(10)

It is implemented as Gamma[a, 0, z] in the Wolfram Language.

By definition, the lower and upper incomplete gamma functions satisfy

 Gamma(a,x)+gamma(a,x)=Gamma(a).
(11)

The exponential integral Ei(z) is closely related to the incomplete gamma function Gamma(0,z) by

 Gamma(0,z)=-Ei(-z)+1/2[ln(-z)-ln(-1/z)]-lnz.
(12)

Therefore, for real x,

 Gamma(0,x)={-Ei(-x)-ipi   for x<0; -Ei(-x)   for x>0.
(13)

See also

Exponential Integral, Gamma Function, Regularized Gamma Function

Related Wolfram sites

http://functions.wolfram.com/GammaBetaErf/Gamma2/, http://functions.wolfram.com/GammaBetaErf/Gamma3/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.Arfken, G. "The Incomplete Gamma Function and Related Functions." §10.5 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 565-572, 1985.Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.

Referenced on Wolfram|Alpha

Incomplete Gamma Function

Cite this as:

Weisstein, Eric W. "Incomplete Gamma Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/IncompleteGammaFunction.html

Subject classifications