The Radon transform is an integral transform whose inverse is used to reconstruct images from medical CT scans. A technique for
using Radon transforms to reconstruct a map of a planet's polar regions using a spacecraft
in a polar orbit has also been devised (Roulston and Muhleman 1997).
If
is a continuous function on , integrable with respect to a plane Lebesgue
measure, and
(24)
for every (doubly) infinite line where is the length measure, then must be identically zero. However, if the global integrability
condition is removed, this result fails (Zalcman 1982, Goldstein 1993).
Anger, B. and Portenier, C. Radon Integrals. Boston, MA: Birkhäuser, 1992.Armitage, D. H.
and Goldstein, M. "Nonuniqueness for the Radon Transform." Proc. Amer.
Math. Soc.117, 175-178, 1993.Deans, S. R. The
Radon Transform and Some of Its Applications. New York: Wiley, 1983.Durrani,
T. S. and Bisset, D. "The Radon Transform and its Properties." Geophys.49,
1180-1187, 1984.Durrani, T. S. and Bisset, D. "Erratum to:
The Radon Transform and Its Properties." Geophys.50, 884-886,
1985.Esser, P. D. (Ed.). Emission
Computed Tomography: Current Trends. New York: Society of Nuclear Medicine,
1983.Gindikin, S. (Ed.). Applied
Problems of Radon Transform. Providence, RI: Amer. Math. Soc., 1994.Goldstein,
H. Classical
Mechanics, 2nd ed. Reading, MA: Addison-Wesley, 1980.Gradshteyn,
I. S. and Ryzhik, I. M. Tables
of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press,
2000.Helgason, S. The
Radon Transform. Boston, MA: Birkhäuser, 1980.Hungerbühler,
N. "Singular Filters for the Radon Backprojection." J. Appl. Analysis5,
17-33, 1998.Kak, A. C. and Slaney, M. Principles
of Computerized Tomographic Imaging. IEEE Press, 1988.Kunyansky,
L. A. "Generalized and Attenuated Radon Transforms: Restorative Approach
to the Numerical Inversion." Inverse Problems8, 809-819, 1992.Nievergelt,
Y. "Elementary Inversion of Radon's Transform." SIAM Rev.28,
79-84, 1986.Rann, A. G. and Katsevich, A. I. The
Radon Transform and Local Tomography. Boca Raton, FL: CRC Press, 1996.Robinson,
E. A. "Spectral Approach to Geophysical Inversion Problems by Lorentz,
Fourier, and Radon Transforms." Proc. Inst. Electr. Electron. Eng.70,
1039-1053, 1982.Roulston, M. S. and Muhleman, D. O. "Synthesizing
Radar Maps of Polar Regions with a Doppler-Only Method." Appl. Opt.36,
3912-3919, 1997.Shepp, L. A. and Kruskal, J. B. "Computerized
Tomography: The New Medical X-Ray Technology." Amer. Math. Monthly85,
420-439, 1978.Strichartz, R. S. "Radon Inversion--Variation
on a Theme." Amer. Math. Monthly89, 377-384 and 420-423, 1982.Weisstein,
E. W. "Books about Radon Transforms." http://www.ericweisstein.com/encyclopedias/books/RadonTransforms.html.Zalcman,
L. "Uniqueness and Nonuniqueness for the Radon Transform." Bull. London
Math. Soc.14, 241-245, 1982.