TOPICS
Search

Quadratic Class Number Constant


The quadratic class number constant is a constant related to the average behavior of class numbers of real quadratic fields. It is given by

Q=product_(p)[1-1/(p^2(p+1))]
(1)
=0.88151383972...
(2)

(OEIS A065465), where the product is over the primes p.


See also

Artin's Constant, Barban's Constant, Feller-Tornier Constant, Heath-Brown-Moroz Constant, Murata's Constant, Prime Products, Sarnak's Constant, Taniguchi's Constant, Twin Primes Constant

Explore with Wolfram|Alpha

References

Cohen, H. A Course in Computational Algebraic Number Theory. New York:Springer-Verlag, p. 291, 1993.Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, p. 107, 2003.Niklasch, G. "Some Number-Theoretical Constants." http://www.gn-50uma.de/alula/essays/Moree/Moree.en.shtml.Sloane, N. J. A. Sequence A065465 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Quadratic Class Number Constant

Cite this as:

Weisstein, Eric W. "Quadratic Class Number Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/QuadraticClassNumberConstant.html

Subject classifications