Let a circle lie inside another circle . From any point on , draw a tangent to and extend it to . From the point, draw another tangent, etc. For tangents, the result is called an -sided Poncelet transverse.
If, on the circle of circumscription there is one point of origin for which a four-sided Poncelet transverse is closed, then the four-sided transverse will also close for any other point of origin on the circle (Dörrie 1965).