The Peano-Gosper curve is a plane-filling function originally called a "flowsnake" by R. W. Gosper and M. Gardner.
Mandelbrot (1977) subsequently coined the name Peano-Gosper curve.
The Gosper island bounds the space that the Peano-Gosper
curve fills.
See also Dragon Curve ,
Exterior Snowflake ,
Gosper Island ,
Hilbert
Curve ,
Koch Snowflake ,
Peano
Curve ,
Sierpiński Arrowhead Curve ,
Sierpiński Curve
Explore with Wolfram|Alpha
References Dickau, R. M. "Two-Dimensional L-Systems." http://mathforum.org/advanced/robertd/lsys2d.html . Mandelbrot,
B. B. Fractals:
Form, Chance, & Dimension. San Francisco, CA: W. H. Freeman, 1977. Mandelbrot,
B. B. The
Fractal Geometry of Nature. New York: W. H. Freeman, pp. 46-47
and 70-71, 1983. Trott, M. Graphica
1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael
Trott. Champaign, IL: Wolfram Media, pp. 13 and 84, 1999. Referenced
on Wolfram|Alpha Peano-Gosper Curve
Cite this as:
Weisstein, Eric W. "Peano-Gosper Curve."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/Peano-GosperCurve.html
Subject classifications