TOPICS
Search

Parry Point


ParryPoint

The Parry point is one of the two intersections of the Parry circle and the circumcircle of a triangle (the other is the focus of the Kiepert parabola, which is Kimberling center X_(110)). The Parry point is Kimberling center X_(111) and has triangle center function

 alpha_(111)=a/(2a^2-b^2-c^2)

(Kimberling 1998, pp. 227-228).


See also

Kiepert Parabola, Parry Circle, Parry Reflection Point

Explore with Wolfram|Alpha

References

Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Kimberling, C. "Parry Point." http://faculty.evansville.edu/ck6/tcenters/recent/parry.html.Kimberling, C. "Encyclopedia of Triangle Centers: X(111)=Parry Point." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X111.

Referenced on Wolfram|Alpha

Parry Point

Cite this as:

Weisstein, Eric W. "Parry Point." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ParryPoint.html

Subject classifications