TOPICS
Search

Paradox


A statement which appears self-contradictory or contrary to expectations, also known as an antinomy. Curry (1977, p. 5) uses the term pseudoparadox to describe an apparent paradox for which, however, there is no underlying actual contradiction. Bertrand Russell classified known logical paradoxes into seven categories.

Ball and Coxeter (1987) give several examples of geometrical paradoxes.


See also

Allais Paradox, Aristotle's Wheel Paradox, Arrow's Paradox, Banach-Tarski Paradox, Barber Paradox, Bernoulli's Paradox, Berry Paradox, Bertrand's Problem, Bottle Imp Paradox, Buchowski Paradox, Burali-Forti Paradox, Cantor's Paradox, Catalogue Paradox, Coastline Paradox, Coin Paradox, Elevator Paradox, Epimenides Paradox, Eubulides Paradox, Grelling's Paradox, Hausdorff Paradox, Hempel's Paradox, Hypergame, Leonardo's Paradox, Liar's Paradox, Potato Paradox, Pseudoparadox, Richard's Paradox, Russell's Antinomy, Saint Petersburg Paradox, Siegel's Paradox, Simpson's Paradox, Skolem Paradox, Smarandache Paradox, Socrates' Paradox, Sorites Paradox, Thomson Lamp Paradox, Unexpected Hanging Paradox, Zeeman's Paradox, Zeno's Paradoxes

Explore with Wolfram|Alpha

References

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 84-86, 1987.Bunch, B. Mathematical Fallacies and Paradoxes. New York: Dover, 1982.Carnap, R. Introduction to Symbolic Logic and Its Applications. New York: Dover, 1958.Church, A. "Paradoxes, Logical." In The Dictionary of Philosophy, rev. enl. ed. (Ed. D. D. Runes). New York: Rowman and Littlefield, p. 224, 1984.Curry, H. B. Foundations of Mathematical Logic. New York: Dover, 1977.Czyz, J. Paradoxes of Measures and Dimensions Originating in Felix Hausdorff's Ideas. Singapore: World Scientific, 1994.Erickson, G. W. and Fossa, J. A. Dictionary of Paradox. Lanham, MD: University Press of America, 1998.Kasner, E. and Newman, J. R. "Paradox Lost and Paradox Regained." In Mathematics and the Imagination. Redmond, WA: Tempus Books, pp. 193-222, 1989.Northrop, E. P. Riddles in Mathematics: A Book of Paradoxes. Princeton, NJ: Van Nostrand, 1944.O'Beirne, T. H. Puzzles and Paradoxes. New York: Oxford University Press, 1965.Quine, W. V. "Paradox." Sci. Amer. 206, 84-96, Apr. 1962.Székely, G. J. Paradoxes in Probability Theory and Mathematical Statistics, rev. ed. Dordrecht, Netherlands: Reidel, 1986.

Referenced on Wolfram|Alpha

Paradox

Cite this as:

Weisstein, Eric W. "Paradox." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Paradox.html

Subject classifications