A statement which appears self-contradictory or contrary to expectations, also known as an antinomy . Curry (1977, p. 5) uses the term
pseudoparadox to describe an apparent paradox for
which, however, there is no underlying actual contradiction. Bertrand Russell classified
known logical paradoxes into seven categories.
Ball and Coxeter (1987) give several examples of geometrical paradoxes.
See also Allais Paradox ,
Aristotle's Wheel Paradox ,
Arrow's Paradox ,
Banach-Tarski
Paradox ,
Barber Paradox ,
Bernoulli's
Paradox ,
Berry Paradox ,
Bertrand's
Problem ,
Bottle Imp Paradox ,
Buchowski
Paradox ,
Burali-Forti Paradox ,
Cantor's
Paradox ,
Catalogue Paradox ,
Coastline
Paradox ,
Coin Paradox ,
Elevator
Paradox ,
Epimenides Paradox ,
Eubulides
Paradox ,
Grelling's Paradox ,
Hausdorff
Paradox ,
Hempel's Paradox ,
Hypergame ,
Leonardo's Paradox ,
Liar's
Paradox ,
Potato Paradox ,
Pseudoparadox ,
Richard's Paradox ,
Russell's
Antinomy ,
Saint Petersburg Paradox ,
Siegel's Paradox ,
Simpson's
Paradox ,
Skolem Paradox ,
Smarandache
Paradox ,
Socrates' Paradox ,
Sorites
Paradox ,
Thomson Lamp Paradox ,
Unexpected
Hanging Paradox ,
Zeeman's Paradox ,
Zeno's
Paradoxes
Explore with Wolfram|Alpha
References Ball, W. W. R. and Coxeter, H. S. M. Mathematical
Recreations and Essays, 13th ed. New York: Dover, pp. 84-86, 1987. Bunch,
B. Mathematical
Fallacies and Paradoxes. New York: Dover, 1982. Carnap, R. Introduction
to Symbolic Logic and Its Applications. New York: Dover, 1958. Church,
A. "Paradoxes, Logical." In The
Dictionary of Philosophy, rev. enl. ed. (Ed. D. D. Runes). New
York: Rowman and Littlefield, p. 224, 1984. Curry, H. B. Foundations
of Mathematical Logic. New York: Dover, 1977. Czyz, J. Paradoxes
of Measures and Dimensions Originating in Felix Hausdorff's Ideas. Singapore:
World Scientific, 1994. Erickson, G. W. and Fossa, J. A. Dictionary
of Paradox. Lanham, MD: University Press of America, 1998. Kasner,
E. and Newman, J. R. "Paradox Lost and Paradox Regained." In Mathematics
and the Imagination. Redmond, WA: Tempus Books, pp. 193-222, 1989. Northrop,
E. P. Riddles
in Mathematics: A Book of Paradoxes. Princeton, NJ: Van Nostrand, 1944. O'Beirne,
T. H. Puzzles
and Paradoxes. New York: Oxford University Press, 1965. Quine,
W. V. "Paradox." Sci. Amer. 206 , 84-96, Apr. 1962. Székely,
G. J. Paradoxes
in Probability Theory and Mathematical Statistics, rev. ed. Dordrecht, Netherlands:
Reidel, 1986. Referenced on Wolfram|Alpha Paradox
Cite this as:
Weisstein, Eric W. "Paradox." From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/Paradox.html
Subject classifications