Let be some attribute (e.g., possible, present, perfect, etc.). If all is , then the non- must also be . For example, "All is possible, the impossible too," and "Nothing is perfect, not even the perfect."
Smarandache Paradox
See also
Socrates' ParadoxExplore with Wolfram|Alpha
References
Le, C. T. "The Smarandache Class of Paradoxes." Bull. Transylvania Univ. Brasov 36, 7-8, 1994.Le, C. T. "The Smarandache Class of Paradoxes." Bull. Pure Appl. Sci. 14E, 109-110, 1995.Le, C. T. "The Smarandache Class of Paradoxes." J. Indian Acad. Math. 18, 53-55, 1996.Mitroiescu, I. The Smarandache Class of Paradoxes. Glendale, AZ: Erhus University Press, 1994.Mitroiescu, I. "The Smarandache's Class of Paradoxes Applied in Computer Science." Abstracts of Papers Presented to the Amer. Math. Soc. 16, 651, 1995.Referenced on Wolfram|Alpha
Smarandache ParadoxCite this as:
Weisstein, Eric W. "Smarandache Paradox." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SmarandacheParadox.html