A function is said to be nondecreasing on an interval if for all , where . Conversely, a function is said to be nonincreasing on an interval if for all with .
Nondecreasing Function
See also
Decreasing Function, Monotone Decreasing, Monotone Increasing, Nonincreasing FunctionExplore with Wolfram|Alpha
References
Jeffreys, H. and Jeffreys, B. S. "Increasing and Decreasing Functions." §1.065 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, p. 22, 1988.Referenced on Wolfram|Alpha
Nondecreasing FunctionCite this as:
Weisstein, Eric W. "Nondecreasing Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NondecreasingFunction.html