TOPICS
Search

Nondecreasing Function


A function f(x) is said to be nondecreasing on an interval I if f(b)>=f(a) for all b>a, where a,b in I. Conversely, a function f(x) is said to be nonincreasing on an interval I if f(b)<=f(a) for all b>a with a,b in I.


See also

Decreasing Function, Monotone Decreasing, Monotone Increasing, Nonincreasing Function

Explore with Wolfram|Alpha

References

Jeffreys, H. and Jeffreys, B. S. "Increasing and Decreasing Functions." §1.065 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, p. 22, 1988.

Referenced on Wolfram|Alpha

Nondecreasing Function

Cite this as:

Weisstein, Eric W. "Nondecreasing Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/NondecreasingFunction.html

Subject classifications