TOPICS
Search

Montgomery-Odlyzko Law


The Montgomery-Odlyzko law (which is a law in the sense of empirical observation instead of through mathematical proof) states that the distribution of the spacing between successive nontrivial zeros of the Riemann zeta function (suitably normalized) is statistically identical with the distribution of eigenvalue spacings in a Gaussian unitary ensemble.


See also

Hilbert-Pólya Conjecture, Montgomery's Pair Correlation Conjecture, Riemann Zeta Function Zeros

Explore with Wolfram|Alpha

References

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 292-294 and 387, 2004.Sabbagh, K. Dr. Riemann's Zeros: The Search for the $1 Million Solution to the Greatest Problem in Mathematics. Atlantic Books, pp. 134-136, 2002.

Referenced on Wolfram|Alpha

Montgomery-Odlyzko Law

Cite this as:

Weisstein, Eric W. "Montgomery-Odlyzko Law." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Montgomery-OdlyzkoLaw.html

Subject classifications