TOPICS
Search

Möbius Inversion Formula


The transform inverting the sequence

 g(n)=sum_(d|n)f(d)
(1)

into

 f(n)=sum_(d|n)mu(d)g(n/d),
(2)

where the sums are over all possible integers d that divide n and mu(d) is the Möbius function.

The logarithm of the cyclotomic polynomial

 Phi_n(x)=product_(d|n)(1-x^(n/d))^(mu(d))
(3)

is closely related to the Möbius inversion formula.


See also

Cyclotomic Polynomial, Dirichlet Generating Function, Möbius Function, Möbius Transform

Explore with Wolfram|Alpha

References

Hardy, G. H. and Wright, W. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 91-93, 1979.Jones, G. A. and Jones, J. M. "The Möbius Inversion Formula." §8.3 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 148-152, 1998.Hunter, J. Number Theory. London: Oliver and Boyd, 1964.Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed. New York: Chelsea, pp. 577-580, 1974.Nagell, T. Introduction to Number Theory. New York: Wiley, pp. 28-29, 1951.Schroeder, M. R. Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity, 3rd ed. Séroul, R. Programming for Mathematicians. Berlin: Springer-Verlag, pp. 19-20, 2000.Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 7-8 and 223-225, 1991.

Referenced on Wolfram|Alpha

Möbius Inversion Formula

Cite this as:

Weisstein, Eric W. "Möbius Inversion Formula." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MoebiusInversionFormula.html

Subject classifications