TOPICS
Search

Leibniz Identity


A generalization of the product rule for expressing arbitrary-order derivatives of products of functions,

 (d^n)/(dx^n)(uv)=(d^nu)/(dx^n)v+(n; 1)(d^(n-1)u)/(dx^(n-1))(dv)/(dx)+...+(n; r)(d^(n-r)u)/(dx^(n-r))(d^rv)/(dx^r)+...+u(d^nv)/(dx^n).

where (n; k) is a binomial coefficient. This can also be written explicitly as

 D^~^nf(t)g(t)=sum_(k=0)^n(n; k)D^~^kf(t)D^~^(n-k)g(t)

(Roman 1980), where D^~ is the differential operator.


See also

Derivative, Faà di Bruno's Formula, Product Rule

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 12, 1972.Roman, S. "The Formula of Faa di Bruno." Amer. Math. Monthly 87, 805-809, 1980.

Referenced on Wolfram|Alpha

Leibniz Identity

Cite this as:

Weisstein, Eric W. "Leibniz Identity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LeibnizIdentity.html

Subject classifications