TOPICS
Search

Klein-Gordon Equation


The partial differential equation

 1/(c^2)(partial^2psi)/(partialt^2)=(partial^2psi)/(partialx^2)-mu^2psi
(1)

that arises in mathematical physics.

The quasilinear Klein-Gordon equation is given by

 u_(tt)-alpha^2u_(xx)+gamma^2u=betau^3
(2)

(Nayfeh 1973, p. 76; Zwillinger 1997, p. 133), and the nonlinear Klein-Gordon equation by

 sum_(i=1)^nu_(x_ix_i)+lambdau^p=0
(3)

(Matsumo 1987; Zwillinger 1997, p. 133).


See also

Liouville's Equation, Sine-Gordon Equation, Wave Equation

Explore with Wolfram|Alpha

References

Matsumo, Y. "Exact Solution for the Nonlinear Klein-Gordon and Liouville Equations in Four-Dimensional Euclidean Space." J. Math. Phys. 28, 2317-2322, 1987.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 272, 1953.Nayfeh, A. H. Perturbation Methods. New York: Wiley, 1973.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, pp. 129 and 133, 1997.

Referenced on Wolfram|Alpha

Klein-Gordon Equation

Cite this as:

Weisstein, Eric W. "Klein-Gordon Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Klein-GordonEquation.html

Subject classifications