TOPICS
Search

Kiepert Center


KiepertCenter

The Kiepert center is the center of the Kiepert hyperbola. It is Kimberling center X_(115), which has equivalent triangle center functions

alpha_(115)=((b^2-c^2)^2)/a
(1)
alpha_(115)=asin^2(B-C)
(2)

(Kimberling 1998, p. 86).


See also

Feuerbach Antipode, Kiepert Antipode, Kiepert Hyperbola

Explore with Wolfram|Alpha

References

Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Kimberling, C. "Encyclopedia of Triangle Centers: X(115)=Center of Kiepert Hyperbola." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X115.

Referenced on Wolfram|Alpha

Kiepert Center

Cite this as:

Weisstein, Eric W. "Kiepert Center." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/KiepertCenter.html

Subject classifications