TOPICS
Search

Kiepert Antipode


KiepertAntipode

The Kiepert center X_(115) (center of the Kiepert hyperbola) lies on the nine-point circle. The Kiepert antipode is the antipode of this point on nine-point circle. It has triangle center function

 alpha_(114)=bc[bsec(B+omega)+csec(C+omega)],

where omega is the Brocard angle, and is Kimberling center X_(114).


See also

Feuerbach Antipode, Jerabek Antipode, Kiepert Hyperbola

Explore with Wolfram|Alpha

References

Kimberling, C. "Encyclopedia of Triangle Centers: X(115)=Kiepert Antipode." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X115.

Referenced on Wolfram|Alpha

Kiepert Antipode

Cite this as:

Weisstein, Eric W. "Kiepert Antipode." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/KiepertAntipode.html

Subject classifications