TOPICS
Search

Inverse Hyperbolic Secant


ArcSech
ArcSechReImAbs
Min Max
Re
Im Powered by webMathematica

The inverse hyperbolic secant sech^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic secant (Harris and Stocker 1998, p. 271) and sometimes also denoted arcsechz (Jeffrey 2000, p. 124), is the multivalued function that is the inverse function of the hyperbolic secant. The variants Arcsechz or Arsechz (Harris and Stocker 1998, p. 263) are sometimes used to refer to explicit principal values of the inverse hyperbolic secant, although this distinction is not always made. Worse yet, the notation arccschz is sometimes used for the principal value, with Arcsechz being used for the multivalued function (Abramowitz and Stegun 1972, p. 87). Note that in the notation sech^(-1)z, sechz is the hyperbolic secant and the superscript -1 denotes an inverse function, not the multiplicative inverse.

The principal value of sech^(-1)z is implemented in the Wolfram Language as ArcSech[z].

InverseHyperbolicSecantBranchCut

The inverse hyperbolic secant is a multivalued function and hence requires a branch cut in the complex plane, which the Wolfram Language's convention places at the line segments (-infty,0] and (1,infty). This follows from the definition of sech^(-1)z as

 sech^(-1)z=ln(sqrt(1/z-1)sqrt(1/z+1)+1/z).
(1)

For real x, it satisfies

 sech^(-1)x={ln((1-sqrt(1-x^2))/x)   for x<-1; ln((1+sqrt(1-x^2))/x)   for x>0.
(2)

The derivative of the inverse hyperbolic secant is given by

 d/zsech^(-1)z=-1/(z(z+1)sqrt((1-z)/(1+z))),
(3)

and its indefinite integral is

 intsech^(-1)zdz 
 =zsech^(-1)z-tan^(-1)(z/(z-1)sqrt((1-z)/(1+z)))+C.
(4)

It has Maclaurin series

sech^(-1)x=-lnx+ln2+sum_(n=1)^(infty)((-1)^(n+1)(2n-1)!!)/(2n(2n)!!)x^(2n)
(5)
=-lnx+ln2-1/4x^2-3/(32)x^4-5/(96)x^6-(35)/(1024)x^8+...
(6)

(OEIS A052468 and A052469).


See also

Hyperbolic Secant, Inverse Hyperbolic Functions

Related Wolfram sites

http://functions.wolfram.com/ElementaryFunctions/ArcSech/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, 1998.Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, 2000.Sloane, N. J. A. Sequences A052468 and A052469 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.

Referenced on Wolfram|Alpha

Inverse Hyperbolic Secant

Cite this as:

Weisstein, Eric W. "Inverse Hyperbolic Secant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/InverseHyperbolicSecant.html

Subject classifications