A quantity which remains unchanged under certain classes of transformations. Invariants are extremely useful for classifying mathematical objects because they usually reflect intrinsic properties of the object of study.
Invariant
See also
Adiabatic Invariant, Alexander Invariant, Algebraic Invariant, Arf Invariant, Elliptic Invariants, Integral of Motion, Knot PolynomialExplore with Wolfram|Alpha
References
Hunt, B. "Invariants." Appendix B.1 in The Geometry of Some Special Arithmetic Quotients. New York: Springer-Verlag, pp. 282-290, 1996.Olver, P. J. Classical Invariant Theory. Cambridge, England: Cambridge University Press, 1999.Referenced on Wolfram|Alpha
InvariantCite this as:
Weisstein, Eric W. "Invariant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Invariant.html