A quantity such as a polynomial discriminant which remains unchanged under a given class of algebraic transformations. Such invariants were originally called hyperdeterminants by Cayley.
Algebraic Invariant
See also
Discriminant, Invariant, Polynomial Discriminant, Quadratic InvariantExplore with Wolfram|Alpha
References
Grace, J. H. and Young, A. The Algebra of Invariants. New York: Chelsea, 1965.Gurevich, G. B. Foundations of the Theory of Algebraic Invariants. Groningen, Netherlands: P. Noordhoff, 1964.Hermann, R. and Ackerman, M. Hilbert's Invariant Theory Papers. Brookline, MA: Math Sci Press, 1978.Hilbert, D. Theory of Algebraic Invariants. Cambridge, England: Cambridge University Press, 1993.Mumford, D.; Fogarty, J.; and Kirwan, F. Geometric Invariant Theory, 3rd enl. ed. New York: Springer-Verlag, 1994.Weisstein, E. W. "Books about Invariants." http://www.ericweisstein.com/encyclopedias/books/Invariants.html.Referenced on Wolfram|Alpha
Algebraic InvariantCite this as:
Weisstein, Eric W. "Algebraic Invariant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AlgebraicInvariant.html