An inflection point is a point on a curve at which the sign of the curvature (i.e., the concavity) changes. Inflection
points may be stationary points, but are not
local maxima or local
minima. For example, for the curve plotted above, the point
is an inflection point.
The first derivative test can sometimes distinguish inflection points from extrema for differentiable
functions .
The second derivative test is also useful. A necessary condition for to be an inflection point is
. A sufficient condition
requires
and
to have opposite signs in the neighborhood of
(Bronshtein and Semendyayev 2004, p. 231).