TOPICS
Search

Hypocycloid


HypocycloidDiagram

The curve produced by fixed point P on the circumference of a small circle of radius b rolling around the inside of a large circle of radius a>b. A hypocycloid is therefore a hypotrochoid with h=b.

To derive the equations of the hypocycloid, call the angle by which a point on the small circle rotates about its center theta, and the angle from the center of the large circle to that of the small circle phi. Then

 (a-b)phi=btheta,
(1)

so

 theta=(a-b)/bphi.
(2)

Call rho=a-2b. If x(0)=rho, then the first point is at minimum radius, and the Cartesian parametric equations of the hypocycloid are

x=(a-b)cosphi-bcostheta
(3)
=(a-b)cosphi-bcos((a-b)/bphi)
(4)
y=(a-b)sinphi+bsintheta
(5)
=(a-b)sinphi+bsin((a-b)/bphi).
(6)

If x(0)=a instead so the first point is at maximum radius (on the circle), then the equations of the hypocycloid are

x=(a-b)cosphi+bcos((a-b)/bphi)
(7)
y=(a-b)sinphi-bsin((a-b)/bphi).
(8)

The curvature, arc length, and tangential angle of a hypocycloid are given by

kappa(phi)=(2b-a)/(4b(a-b))csc((aphi)/(2b))
(9)
s(phi)=(8(a-b)b)/asin^2((aphi)/(4b))
(10)
phi_t(phi)=phi(1-a/(2b)).
(11)
HypocycloidIntegers
Hypocycloids with $a/b$ an integer

An n-cusped hypocycloid has a/b=n. For n=a/b an integer and with x(0)=a, the equations of the hypocycloid therefore become

x=a/n[(n-1)cosphi-cos[(n-1)phi]
(12)
y=a/n[(n-1)sinphi+sin[(n-1)phi],
(13)

and the arc length and area are therefore

s_n=8b(n-1)=(8a(n-1))/n
(14)
A_n=((n-1)(n-2))/(n^2)pia^2.
(15)

A 2-cusped hypocycloid is a line segment (Steinhaus 1999, p. 145; Kanas 2003), as can be seen by setting a=2b in equations (◇) and (◇) and noting that the equations simplify to

x=asinphi
(16)
y=0.
(17)

This result was noted by the Persian astronomer and mathematician Nasir Al-Din al-Tusi (1201-1274), and is sometimes known as a "Tusi couple" is his honor (Sotiroudis and Paschos 1999, p. 60; Kanas 2003).

The following tables summarizes the names given to this and other hypocycloids with special integer values of a/b.

HypocycloidRationals
Hypocycloids with $a/b$ rational

If n=a/b is rational, then the curve eventually closes on itself and has a cusps. Hypocycloids for a number of rational values of a/b are illustrated above.

HypocycloidIrrational

If a/b is irrational, then the curve never closes on itself. Hypocycloids for a number of irrational values of a/b are illustrated above.

HypocycloidConstruction

n-cusped hypocycloids can also be constructed by beginning with the diameter of a circle, offsetting one end by a series of steps while at the same time offsetting the other end by steps n-1 times as large in the opposite direction and extending beyond the edge of the circle. After traveling around the circle once, an n-cusped hypocycloid is produced, as illustrated above (Madachy 1979).

Let r be the radial distance from a fixed point. For radius of torsion rho and arc length s, a hypocycloid can given by the equation

 s^2+rho^2=16r^2
(18)

(Kreyszig 1991, pp. 63-64). A hypocycloid also satisfies

 sin^2psi=(rho^2)/(a^2-rho^2)(a^2-r^2)/(r^2),
(19)

where

 r(dr)/(dtheta)=tanpsi
(20)

and psi is the angle between the radius vector and the tangent to the curve.

The equation of the hypocycloid can be put in a form which is useful in the solution of calculus of variations problems with radial symmetry. Consider the case x(0)=rho, then

 r^2=x^2+y^2 
=[(a-b)^2cos^2phi-2(a-b)bcosphicos((a-b)/bphi)+b^2cos^2((a-b)/bphi)+(a-b)^2sin^2phi+2(a-b)bsinphisin((a-b)/bphi)+b^2sin^2((a-b)/bphi)] 
={(a-b)^2+b^2-2(a-b)b[cosphicos((a-b)/bphi)-sinphisin((a-b)/bphi)]} 
=(a-b)^2+b^2-2(a-b)bcos(a/bphi).
(21)

But rho=a-2b, so b=(a-rho)/2, which gives

(a-b)^2+b^2=[a-1/2(a-rho)]^2+[1/2(a-rho)]^2
(22)
=[1/2(a+rho)]^2+[1/2(a-rho)]^2
(23)
=1/2(a^2+rho^2)
(24)
2(a-b)b=2[a-1/2(a-rho)]1/2(a-rho)
(25)
=1/2(a+rho)(a-rho)
(26)
=1/2(a^2-rho^2).
(27)

Now let

 2Omegat=a/bphi,
(28)

so

 phi=(a-rho)/aOmegat
(29)
 phi/(a-rho)=(Omegat)/a,
(30)

then

r^2=1/2(a^2+rho^2)-1/2(a^2-rho^2)cos(a/bphi)
(31)
=1/2(a^2+rho^2)-1/2(a^2-rho^2)cos(2Omegat).
(32)

The polar angle is

 tantheta=y/x=((a-b)sinphi+bsin((a-b)/aphi))/((a-b)cosphi-bcos((a-b)/aphi)).
(33)

But

b=1/2(a-rho)
(34)
a-b=1/2(a+rho)
(35)
(a-b)/b=(a+rho)/(a-rho),
(36)

so

tantheta=(1/2(a+rho)sinphi+1/2(a-rho)sin((a+rho)/(z-rho)phi))/(1/2(a+rho)cosphi-1/2(a-rho)cos((a+rho)/(a-rho)phi))
(37)
=((a+rho)sin((a-rho)/aOmegat)+(a-rho)sin((a+rho)/aOmegat))/((a+rho)cos((a-rho)/aOmegat)-(a-rho)cos((a+rho)/aOmegat))
(38)
=(a[sin((a-rho)/aOmegat)+sin((a+rho)/aOmegat)]+rho[sin((a-rho)/aOmegat)-sin((a+rho)/aOmegat)])/(a[cos((a-rho)/aOmegat)-cos((a+rho)/aOmegat)]+rho[cos((a-rho)/aOmegat)+cos((a+rho)/aOmegat)])
(39)
=(2asin(Omegat)cos(rho/aOmegat)-2rhocos(Omegat)sin(rho/aOmegat))/(2asin(Omegat)sin(rho/aOmegat)+2rhocos(Omegat)cos(rho/aOmegat))
(40)
=(atan(Omegat)-rhotan(rho/aOmegat))/(atan(Omegat)tan(rho/aOmegat)+rho).
(41)

Computing

tan(theta+rho/aOmegat)=([atan(Omegat)-rhotan(rho/aOmegat)+tan(rho/aOmegat)][atan(Omegat)tan(rho/aOmegat)+rho])/([atan(Omegat)tan(rho/aOmegat)+rho]-[atan(Omegat)-rhotan(rho/aOmegat)]tan(rho/aOmegat))
(42)
=(atan(Omegat)[1+tan^2(rho/aOmegat)])/(rho[1+tan^2(rho/aOmegat)])
(43)
=a/rhotan(Omegat),
(44)

then gives

 theta=tan^(-1)[a/rhotan(Omegat)]-rho/aOmegat.
(45)

Finally, plugging back in gives

theta=tan^(-1)[a/rhotan(a/(a-rho)phi)]-rho/aa/(a-rho)phi
(46)
=tan^(-1)[a/rhotan(a/(a-rho)phi)]-rho/(a-rho)phi.
(47)

This form is useful in the solution of the sphere with tunnel problem, which is the generalization of the brachistochrone problem, to find the shape of a tunnel drilled through a sphere (with gravity varying according to Gauss's law) in a gravitational field such that the travel time between two points on the surface of the sphere under the force of gravity is minimized.


See also

Astroid, Cycloid, Deltoid, Epicycloid, Hypocycloid Evolute, Hypocycloid Involute, Hypocycloid Pedal Curve, Tusi Couple

Explore with Wolfram|Alpha

References

Bogomolny, A. "Cycloids." http://www.cut-the-knot.org/pythagoras/cycloids.shtml.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 83, 2003.Kanas, N. "From Ptolemy to the Renaissance: How Classical Astronomy Survived the Dark Ages." Sky & Telescope 105, 50-58, Jan. 2003.Kreyszig, E. Differential Geometry. New York: Dover, 1991.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 171-173, 1972.Lemaire, J. Hypocycloïdes et epicycloïdes. Paris: Albert Blanchard, 1967.MacTutor History of Mathematics Archive. "Hypocycloid." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Hypocycloid.html.Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 225-231, 1979.Sotiroudis, P. and Paschos, E. A. The Schemata of the Stars: Byzantine Astronomy from A.D. 1300. Singapore: World Scientific, 1999.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 50-52, 1991.Yates, R. C. "Epi- and Hypo-Cycloids." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 81-85, 1952.

Cite this as:

Weisstein, Eric W. "Hypocycloid." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Hypocycloid.html

Subject classifications