A hyperbolic paraboloid is the quadratic and doubly ruled surface given by the Cartesian
equation
(1)
(left figure). An alternative form is
(2)
(right figure; Fischer 1986), which has parametric
equations
(Gray 1997, pp. 297-298).
The coefficients of the first fundamental form
are
and the second fundamental form coefficients
are
giving surface area element
(12)
The Gaussian curvature is
(13)
and the mean curvature is
(14)
The Gaussian curvature can be given implicitly as
(15)
Three skew lines always define a one-sheeted hyperboloid , except in the case where they are all parallel to a single plane
but not to each other. In this case, they determine a hyperbolic paraboloid (Hilbert
and Cohn-Vossen 1999, p. 15).
See also Doubly Ruled Surface ,
Elliptic Paraboloid ,
Paraboloid ,
Ruled Surface ,
Saddle ,
Skew Quadrilateral
Explore with Wolfram|Alpha
References Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 227,
1987. Fischer, G. (Ed.). Mathematische
Modelle aus den Sammlungen von Universitäten und Museen, Kommentarband.
Braunschweig, Germany: Vieweg, pp. 3-4, 1986. Fischer, G. (Ed.).
Plates 7-9 in Mathematische
Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig,
Germany: Vieweg, pp. 8-10, 1986. Gray, A. "The Hyperbolic Paraboloid."
Modern
Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca
Raton, FL: CRC Press, pp. 297-298 and 449, 1997. Hilbert, D. and
Cohn-Vossen, S. Geometry
and the Imagination. New York: Chelsea, 1999. JavaView. "Classic
Surfaces from Differential Geometry: Hyperbolic Paraboloid." http://www-sfb288.math.tu-berlin.de/vgp/javaview/demo/surface/common/PaSurface_HyperbolicParaboloid.html . McCrea,
W. H. Analytical
Geometry of Three Dimensions. Edinburgh: Oliver and Boyd, 1947. Meyer,
W. "Spezielle algebraische Flächen." Encylopädie der Math.
Wiss. III , 22B , 1439-1779. Salmon, G. Analytic
Geometry of Three Dimensions. New York: Chelsea, 1979. Steinhaus,
H. Mathematical
Snapshots, 3rd ed. New York: Dover, p. 245, 1999. Wells,
D. The
Penguin Dictionary of Curious and Interesting Geometry. London: Penguin,
pp. 110-112, 1991.
Cite this as:
Weisstein, Eric W. "Hyperbolic Paraboloid."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/HyperbolicParaboloid.html
Subject classifications