TOPICS
Search

Hyperboloid


Hyperboloid

A hyperboloid is a quadratic surface which may be one- or two-sheeted. The one-sheeted hyperboloid is a surface of revolution obtained by rotating a hyperbola about the perpendicular bisector to the line between the foci, while the two-sheeted hyperboloid is a surface of revolution obtained by rotating a hyperbola about the line joining the foci (Hilbert and Cohn-Vossen 1991, p. 11).


See also

Barrel, Catenoid, Confocal Ellipsoidal Coordinates, Confocal Quadrics, Cylinder, Doubly Ruled Surface, Ellipsoid, Elliptic Hyperboloid, Hyperbola, Hyperboloid Embedding, One-Sheeted Hyperboloid, Paraboloid, Ruled Surface, Spaghetti Bundle, Trihyperboloid, Two-Sheeted Hyperboloid

Explore with Wolfram|Alpha

References

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 227, 1987.Fischer, G. (Ed.). Plates 67 and 69 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, pp. 62 and 64, 1986.Gray, A. "The Hyperboloid of Revolution." §20.5 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 470, 1997.Harris, J. W. and Stocker, H. "Hyperboloid of Revolution." §4.10.3 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 112, 1998.Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, pp. 10-11, 1999.JavaView. "Classic Surfaces from Differential Geometry: Hyperboloid." http://www-sfb288.math.tu-berlin.de/vgp/javaview/demo/surface/common/PaSurface_Hyperboloid.html.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 112-113, 1991.

Cite this as:

Weisstein, Eric W. "Hyperboloid." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Hyperboloid.html

Subject classifications