TOPICS
Search

Heun Functions


Heun functions are generalizations of hypergeometric functions that occur in quantum mechanics, mathematical physics and other applications. There are a variety of Heun function types. A number of these are summarized in the following table together with their implementations in the Wolfram Language.

typefunctionderivate function
generalHeunGHeunGPrime
confluentHeunCHeunCPrime
double confluentHeunDHeunDPrime
bi-confluentHeunBHeunBPrime
tri-confluentHeunTHeunTPrime
Lamé CLameCLameCPrime
Lamé SLameSLameSPrime

H_G(a,q,alpha,beta,gamma,delta,z) satisfies the general Heun differential equation

 z(z-1)(z-a)y^('')+((z-1)(z-a)gamma+z(z-a)delta+z(z-1)(1+alpha+beta-gamma-delta))y^'+(alphabetaz-q)y=0.
(1)

H_C(q,alpha,gamma,delta,epsilon,z) satisfies the confluent Heun differential equation

 z(z-1)y^('')+(gamma(z-1)+deltaz+z(z-1)epsilon)y^'+(alphaz-q)y=0,
(2)

H_D(q,alpha,gamma,delta,epsilon,z) satisfies the double-confluent Heun differential equation

 z^2y^('')+(gamma+deltaz+epsilonz^2)y^'+(alphaz-q)y=0,
(3)

H_B(q,alpha,gamma,delta,epsilon,z) satisfies the bi-confluent Heun differential equation

 zy^('')+(gamma+deltaz+epsilonz^2)y^'+(alphaz-q)y=0.,
(4)

H_T(q,alpha,gamma,delta,epsilon,z) satisfies the tri-confluent Heun differential equation

 y^('')+(gamma+deltaz+epsilonz^2)y^'+(alphaz-q)y=0,
(5)

L_C(nu,j,z,m) satisfies the Lam' differential equation

 y^('')+[h-nu(nu+1)msn^2(z,k)]y=0,
(6)

and L_S(nu,j,z,m) satisfies the Lamé differential equation

 y^('')+[h-nu(nu+1)msn^2(z,k)]y=0,
(7)

where in the latter two, sn(u,k) is a Jacobi elliptic function with elliptic modulus k.


See also

Heun's Differential Equation, Lamé's Differential Equation, Riemann P-Differential Equation, Ellipsoidal Harmonic of the First Kind, Ellipsoidal Harmonic of the Second Kind

Explore with Wolfram|Alpha

References

Heun, K. "Zur Theorie der Riemann'schen Functionen Zweiter Ordnung mit Verzweigungspunkten." Math. Ann. 33, 161-179, 1889.

Cite this as:

Weisstein, Eric W. "Heun Functions." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HeunFunctions.html

Subject classifications