TOPICS
Search

Ellipsoidal Harmonic of the Second Kind


Ellipsoidal harmonics of the second kind, also known as Lamé functions of the second kind, are variously defined as

 F_m^p(x)=(2m+1)E_m^p(x)int_x^infty(dx)/(sqrt((x^2-b^2)(x^2-c^2))[E_m^p(x)]^2)

(Byerly 1959, p. 258) or

 F_m^p(x)=(2m+1)E_m^p(x)int_0^u(du)/([E_m^p(u)]^2)

(Heine 1845, p. 194; Whittaker and Watson 1990, p. 562).


See also

Ellipsoidal Harmonic of the First Kind

Explore with Wolfram|Alpha

References

Byerly, W. E. "Laplace's Equation in Curvilinear Coördinates. Ellipsoidal Harmonics." Ch. 8 in An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, pp. 251-266, 1959.Heine, E. "Beitrag zur Theorie der Anziehung und der Wärme." J. reine angew. Math. 29, 185-208, 1845.Whittaker, E. T. and Watson, G. N. "Lamé Functions of the Second Kind." §23.47 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 562-563, 1990.

Referenced on Wolfram|Alpha

Ellipsoidal Harmonic of the Second Kind

Cite this as:

Weisstein, Eric W. "Ellipsoidal Harmonic of the Second Kind." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EllipsoidalHarmonicoftheSecondKind.html

Subject classifications