TOPICS
Search

Fourier Sine Transform


The Fourier sine transform is the imaginary part of the full complex Fourier transform,

F_x^((s))[f(x)](k)=I[F_x[f(x)](k)]
(1)
=int_(-infty)^inftysin(2pikx)f(x)dx.
(2)

The Fourier sine transform F_s(k) of a function f(x) is implemented as FourierSinTransform[f, x, k], and different choices of a and b can be used by passing the optional FourierParameters -> {a, b} option. In this work, a=0 and b=-2pi.

The discrete Fourier sine transform of a list l of real numbers can be computed in the Wolfram Language using FourierDST[l].


See also

Fourier Cosine Transform, Fourier Transform

Explore with Wolfram|Alpha

References

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "FFT of Real Functions, Sine and Cosine Transforms." §12.3 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 504-515, 1992.

Referenced on Wolfram|Alpha

Fourier Sine Transform

Cite this as:

Weisstein, Eric W. "Fourier Sine Transform." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FourierSineTransform.html

Subject classifications