A binomial coefficient
is said to be exceptional if
. The following table gives the exception binomial
coefficients which are also good binomial
coefficients, are not of the form
, and have specified least prime factors
.
 | exceptional binomial coefficients |
13 |  |
17 | , , , , , |
| ,
,
 |
19 | ,  |
23 |  |
29 |  |
See also
Good Binomial Coefficient,
Least Prime Factor
Explore with Wolfram|Alpha
References
Erdős, P.; Lacampagne, C. B.; and Selfridge, J. L. "Estimates of the Least Prime Factor of a Binomial Coefficient." Math.
Comput. 61, 215-224, 1993.Referenced on Wolfram|Alpha
Exceptional Binomial Coefficient
Cite this as:
Weisstein, Eric W. "Exceptional Binomial Coefficient."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ExceptionalBinomialCoefficient.html
Subject classifications