TOPICS
Search

Exceptional Binomial Coefficient


A binomial coefficient (N; k) is said to be exceptional if lpf(N; k)>N/k. The following table gives the exception binomial coefficients which are also good binomial coefficients, are not of the form (N; N-1), and have specified least prime factors p>5.

pexceptional binomial coefficients
13(3574; 406)
17(241; 16), (439; 33), (317; 56), (482; 130), (998; 256),
(998; 260), (14273; 896), (13277; 900)
19(62; 6), (959; 56)
23(474; 66)
29(284; 28)

See also

Good Binomial Coefficient, Least Prime Factor

Explore with Wolfram|Alpha

References

Erdős, P.; Lacampagne, C. B.; and Selfridge, J. L. "Estimates of the Least Prime Factor of a Binomial Coefficient." Math. Comput. 61, 215-224, 1993.

Referenced on Wolfram|Alpha

Exceptional Binomial Coefficient

Cite this as:

Weisstein, Eric W. "Exceptional Binomial Coefficient." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ExceptionalBinomialCoefficient.html

Subject classifications