TOPICS
Search

Erfi


ErfiReal
Min Max
Powered by webMathematica
ErfiReImAbs
Min Max
Re
Im Powered by webMathematica

The "imaginary error function" erfi(z) is an entire function defined by

 erfi(z)=-ierf(iz),
(1)

where erf(z) is the erf function. It is implemented in the Wolfram Language as Erfi[z].

erfiz has derivative

 d/(dz)erfi(z)=2/(sqrt(pi))e^(z^2),
(2)

and integral

 interfi(z)dz=zerfi(z)-(e^(z^2))/(sqrt(pi)).
(3)

It has series about z=0 given by

 erfi(z)=pi^(-1/2)(2z+2/3z^3+1/5z^5+1/(21)z^7+...)
(4)

(where the terms are OEIS A084253), and series about infinity given by

 erfi(z)=-i+(e^(z^2))/(sqrt(pi))(z^(-1)+1/2z^(-3)+3/4z^(-5)+(15)/8z^(-7)+...).
(5)

(OEIS A001147 and A000079).


See also

Dawson's Integral, Erf, Erfc

Related Wolfram sites

http://functions.wolfram.com/GammaBetaErf/Erfi/

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Sloane, N. J. A. Sequences A000079/M1129, A001147/M3002, and A084253 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Erfi

Cite this as:

Weisstein, Eric W. "Erfi." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Erfi.html

Subject classifications