Dawson's integral (Abramowitz and Stegun 1972, pp. 295 and 319), also sometimes called Dawson's function, is the entire function
given by the integral
(1)
(2)
where
is erfi, that arises in computation of the Voigt lineshape
(Harris 1948, Hummer 1963, Sajo 1993, Lether 1997), in heat conduction, and in the
theory of electrical oscillations in certain special vacuum tubes (McCabe 1974).
It is commonly denoted
(McCabe 1974; Coleman 1987; Milone and Milone 1988; Sajo 1993; Lether 1997; Press
et al. 2007, p. 302), although Spanier and Oldham (1987) denote it by
.
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 295 and 319, 1972.Cody, W. J.; Pociorek,
K. A.; and Thatcher, H. C. "Chebyshev Approximations for Dawson's
Integral." Math. Comput.24, 171-178, 1970.Coleman,
J. P. "Complex Polynomial Approximation by the Lanczos -Method: Dawson's Integral." J. Comput. Appl. Math.20,
137-151, 1987.Dawson, F. "On the Numerical Value of ." London Math. Soc. Proc.29,
519-522, 1898.Dijkstra, D. A. "A Continued Fraction Expansion
for a Generalization of Dawson's Integral." Math. Comp.31, 503-510,
1977.Faddeyeva, V. N. and Terent'ev, N. M. Tables of Values
of the Function
for Complex Argument. New York: Pergamon Press, 1961.Harris, D.
III. "On the Line Absorption Coefficients Due to Doppler Effect and Damping."
Astrophys. J.108, 1120-115, 1948.Hummer, D. G. "Noncoherent
Scattering I. The Redistribution Functions with Doppler Broadening." Monthly
Not. Roy. Astron. Soc.125, 21-37, 1963.Hummer, D. G.
"Expansion of Dawson's Function in a Series of Chebyshev Polynomials."
Math. Comput.18, 317-319, 1964.Lether, F. G. "Elementary
Approximations for Dawson's Integral." J. Quant. Spectros. Radiat. Transfer4,
343-345, 1991.Lether, F. G. "Constrained Near-Minimax Rational
Approximations to Dawson's Integral." Appl. Math. Comput.88,
267-274, 1997.Lohmander, B. and Rittsten, S. "Table of the Function
." Kungl.
Fysiogr. Sällsk. i Lund Föhr.28, 45-52, 1958.Luke,
Y. L. The
Special Functions and their Approximations, Vol. 2. New York: Academic
Press, 1969.McCabe, J. H. "A Continued Fraction Expansion
with a Truncation Error Estimate for Dawson's Integral." Math. Comput.28,
811-816, 1974.Milone, L. A. and Milone, A. A. E. "Evaluation
of Dawson's Function." Astrophys. Space Sci.147, 189-191, 1988.Moshier,
S. L. Methods and Programs for Mathematical Functions. Chichester, England:
Ellis Horwood, 1989.Press, W. H.; Flannery, B. P.; Teukolsky,
S. A.; and Vetterling, W. T. "Dawson's Integral." §6.10
in Numerical
Recipes: The Art of Scientific Computing, 3rd ed. Cambridge, England: Cambridge
University Press, pp. 302-304, 2007.Rosser, J. B. "Theory
and Application of
and ."
Brooklyn, NY: Mapleton House, 1948.Rybicki, G. B. "Dawson's
Integral and the Sampling Theorem." Computers in Physics3, 85-87,
1989.Sajo, E. "On the Recursive Properties of Dawson's Integral."
J. Phys. A26, 2977-2987, 1993.Sloane, N. J. A.
Sequences A001147/M3002, A122803,
A133841, A133842,
and A133843 in "The On-Line Encyclopedia
of Integer Sequences."Spanier, J. and Oldham, K. B. "Dawson's
Integral." Ch. 42 in An
Atlas of Functions. Washington, DC: Hemisphere, pp. 405-410, 1987.