The Erdős-Selfridge function is defined as the least integer bigger than such that the least prime
factor of
exceeds ,
where
is the binomial coefficient (Ecklund et
al. 1974, Erdős et al. 1993). The best lower bound known is
(Granville and Ramare 1996). Scheidler and Williams (1992) tabulated up to , and Lukes et al. (1997) tabulated for . The values for , 2, 3, ... are 3, 6, 7, 7, 23, 62, 143, 44, 159, 46, 47,
174, 2239, ... (OEIS A003458).
Ecklund, E. F. Jr.; Erdős, P.; and Selfridge, J. L. "A New Function Associated with the prime factors of ." Math. Comput.28, 647-649, 1974.Erdős,
P.; Lacampagne, C. B.; and Selfridge, J. L. "Estimates of the Least
Prime Factor of a Binomial Coefficient." Math. Comput.61, 215-224,
1993.Granville, A. and Ramare, O. "Explicit Bounds on Exponential
Sums and the Scarcity of Squarefree Binomial Coefficients." Mathematika43,
73-107, 1996.Lukes, R. F.; Scheidler, R.; and Williams, H. C.
"Further Tabulation of the Erdős-Selfridge Function." Math. Comput.66,
1709-1717, 1997.Scheidler, R. and Williams, H. C. "A Method
of Tabulating the Number-Theoretic Function ." Math. Comput.59, 251-257, 1992.Sloane,
N. J. A. Sequence A003458/M2515
in "The On-Line Encyclopedia of Integer Sequences."