TOPICS
Search

Eigenform


Given a differential operator D on the space of differential forms, an eigenform is a form alpha such that

 Dalpha=lambdaalpha
(1)

for some constant lambda. For example, on the torus, the Dirac operator D=-i(d+d^*) acts on the form

 beta=3e^(i(3x+4y))+5e^(i(3x+4y))dx-4e^(i(3x+4y))dx ^ dy,
(2)

giving

 Dbeta=15e^(i(3x+4y))+25e^(i(3x+4y))dx-20e^(i(3x+4y))dx ^ dy,
(3)

i.e., Dbeta=5beta.


See also

Dirac Operator, Eigen Decomposition, Laplacian, Operator Spectrum

This entry contributed by Todd Rowland

Explore with Wolfram|Alpha

Cite this as:

Rowland, Todd. "Eigenform." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/Eigenform.html

Subject classifications