 |
(1)
|
 |
(2)
|
 |
(3)
|
where
,
,
and
.
 |
(4)
|
 |
(5)
|
 |
(6)
|
The scale factors are
The Laplacian is
 |
(10)
|
The Helmholtz differential equation
is separable.
See also
Helmholtz Differential Equation--Confocal Paraboloidal Coordinates,
Paraboloidal
Coordinates
Explore with Wolfram|Alpha
References
Arfken, G. "Confocal Parabolic Coordinates (
,
,
)." §2.17 in Mathematical
Methods for Physicists, 2nd ed. Orlando, FL: Academic Press, pp. 119-120,
1970.Moon, P. and Spencer, D. E. "Paraboloidal Coordinates
."
Table 1.11 in Field
Theory Handbook, Including Coordinate Systems, Differential Equations, and Their
Solutions, 2nd ed. New York: Springer-Verlag, pp. 44-48, 1988.Morse,
P. M. and Feshbach, H. Methods
of Theoretical Physics, Part I. New York: McGraw-Hill, p. 664, 1953.Referenced
on Wolfram|Alpha
Confocal Paraboloidal Coordinates
Cite this as:
Weisstein, Eric W. "Confocal Paraboloidal Coordinates."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ConfocalParaboloidalCoordinates.html
Subject classifications