TOPICS
Search

Scale Factor


For a diagonal metric tensor g_(ij)=g_(ii)delta_(ij), where delta_(ij) is the Kronecker delta, the scale factor for a parametrization x_1=f_1(q_1,q_2,...,q_n), x_2=f_2(q_1,q_2,...,q_n), ..., is defined by

h_i=sqrt(g_(ii))
(1)
=sqrt(sum_(k=1)^(n)((partialx_k)/(partialq_i))^2).
(2)

The line element (first fundamental form) is then given by

ds^2=g_(11)dx_1^2+g_(22)dx_2^2+...+g_(nn)dx_n^2
(3)
=h_1^2dx_1^2+h_2^2dx_2^2+...+h_n^2dx_n^2.
(4)

The scale factor appears in vector derivatives of coordinates in curvilinear coordinates.


See also

Curvilinear Coordinates, Fundamental Forms, Line Element, Metric Tensor

Explore with Wolfram|Alpha

References

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, p. 87, 1985.

Referenced on Wolfram|Alpha

Scale Factor

Cite this as:

Weisstein, Eric W. "Scale Factor." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ScaleFactor.html

Subject classifications