TOPICS
Search

Clique Number


The (upper) clique number of a graph G, denoted omega(G), is the number of vertices in a maximum clique of G. Equivalently, it is the size of a largest clique or maximal clique of G.

The clique number omega(G) of a graph is equal to the largest exponent in the graph's clique polynomial.

The lower clique number omega_L(G) may be similarly defined as the size of a graph's smallest maximal clique.

For an arbitrary graph,

 omega(G)>=sum_(i=1)^n1/(n-d_i),
(1)

where d_i is the vertex degree of i.

The clique number of a graph is equal to the independence number of the complement graph,

 omega(G)=alpha(G^_).
(2)

The chromatic number chi(G) of a graph G is equal to or greater than its clique number omega(G), i.e.,

 chi(G)>=omega(G).
(3)

The following table lists the clique numbers for some named graphs.

The following table gives the number N_k(n) of n-node graphs having clique number k for small k.

kOEISN_k(n)
11, 1, 1, 1, 1, 1, 1, 1, ...
2A0524500, 1, 2, 6, 13, 37, 106, 409, 1896, ...
3A0524510, 0, 1, 3, 15, 82, 578, 6021, 101267, ...
4A0524520, 0, 0, 1, 4, 30, 301, 4985, 142276, ...
5A0773920, 0, 0, 0, 1, 5, 51, 842, 27107, ...
6A0773930, 0, 0, 0, 0, 1, 6, 80, 1995, ...
7A0773940, 0, 0, 0, 0, 0, 1, 7, 117, ...
80, 0, 0, 0, 0, 0, 0, 1, 8, ...

See also

Bold Conjecture, Clique Graph, Clique Polynomial, Fractional Clique Number, Independence Number, Maximal Clique, Maximum Clique

Explore with Wolfram|Alpha

References

Aigner, M. "Turán's Graph Theorem." Amer. Math. Monthly 102, 808-816, 1995.Harary, F. and Palmer, E. M. "A Survey of Graph Enumeration Problems." In A Survey of Combinatorial Theory (Ed. J. N. Srivastava). Amsterdam: North-Holland, pp. 259-275, 1973.Hastad, J. "Clique Is Hard to Approximate Within n^(1-epsilon)." Acta Math. 182, 105-142, 1999.Sloane, N. J. A. Sequences A052450, A052451, A052452, A077392, A077393, and A077394 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Clique Number

Cite this as:

Weisstein, Eric W. "Clique Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CliqueNumber.html

Subject classifications