TOPICS
Search

Frucht Graph


FruchtGraph

The Frucht graph is a graph on 12 vertices and 18 edges that is one of five smallest (and two smallest planar) cubic identity graphs (cf. Skiena 1990, p. 185). It is illustrated above in a number of embeddings.

The Frucht graph is implemented in the Wolfram Language as GraphData["FruchtGraph"].

The Frucht graph is Hamiltonian and unit-distance.

It has three inequivalent order-1 LCF notations: [-5, -2, -4, 2, 5, -2, 2, 5, -2, -5, 4, 2], [-5, -2, 2, 3, -2, 4, -3, 5, 2, -4, -2, 2], and [-5, 2, -4, -2, 2, 3, -2, 5, -3, 2, 4, -2].

The cubic symmetric graph F_(432)C, which was the first known cubic 1-arc-transitive graph, is another graph associated with Frucht (Frucht 1952).


See also

Cubic Graph, Frucht's Theorem, Identity Graph

Explore with Wolfram|Alpha

References

Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 235, 1976.Frucht, R. "Herstellung von Graphen mit vorgegebener abstrakter Gruppe." Compos. Math. 6, 239-250, 1939.Frucht, R. "A One-Regular Graph of Degree Three." Canad. J. Math. 4, 240-247, 1952.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.Sloane, N. J. A. Sequences A380935 and A380936

Referenced on Wolfram|Alpha

Frucht Graph

Cite this as:

Weisstein, Eric W. "Frucht Graph." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FruchtGraph.html

Subject classifications