(which is given incorrectly in Gradshteyn and Ryzhik 2000). Here, the constant e is the best possible, in the sense that counterexamples
can be constructed for any stricter inequality which
uses a smaller constant. The theorem is suggested by writing in Hardy's inequality
Carleman, T. "Sur les fonctions quasi-analytiques." Conférences faites au cinqui'eme congrès des mathématiciens
scandinaves. Helsingfors, pp. 181-196, 1923.Gradshteyn, I. S.
and Ryzhik, I. M. Tables
of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press,
p. 1126, 2000.Hardy, G. H.; Littlewood, J. E.; and Pólya,
G. "Carleman's Inequality." §9.12 in Inequalities,
2nd ed. Cambridge, England: Cambridge University Press, pp. 249-250,
1988.Kaluza, T. and Szegö, G. "Über Reihen mit lauter
positiven Gliedern." J. London Math. Soc.2, 266-272, 1927.Knopp,
K. "Über Reihen mit positiven Gliedern." J. London Math. Soc.3,
205-211, 1928.Mitrinović, D. S. Analytic
Inequalities. New York: Springer-Verlag, p. 131, 1970.Ostrowski,
A. "Über quasi-analytischen Funktionen und Bestimmtheit asymptotischer
Entwicklungen." Acta Math.53, 181-266, 1929.Pólya,
G. "Proof of an Inequality." Proc. London Math. Soc.24,
lvii, 1926.Valiron, G. §3, Appendix B in Lectures
on the General Theory of Integral Functions. New York: Chelsea, pp. 186-187,
1949.