Cantor dust is a fractal that can be constructed using string rewriting beginning with a cell
[0] and iterating the rules
(1)
The th iteration of Cantor dust is implemented
in the Wolfram Language as CantorMesh [n ,
2].
Let be the number of black boxes, the length of a side of a box, and
the fractional area
of black boxes after the th
iteration, then
The number of black squares after , 1, 2, ... iterations is therefore 1, 4, 16, 64, 256, 1024,
4096, 16384, ... (OEIS A000302 ). The capacity
dimension is therefore
See also Box Fractal ,
Cantor Set ,
Cantor Square Fractal ,
Haferman
Carpet ,
Sierpiński Carpet ,
Sierpiński
Sieve
Explore with Wolfram|Alpha
References Broden, J.; Espinosa, M.; Nazareth, N.; and Voth, N. "Knots Inside Fractals." 5 Sep 2024. https://arxiv.org/abs/2409.03639 . Dickau,
R. M. "Cantor Dust." http://mathforum.org/advanced/robertd/cantor.html . Mandelbrot,
B. B. The
Fractal Geometry of Nature. New York: W. H. Freeman, p. 80, 1983. Ott,
E. Chaos
in Dynamical Systems. New York: Cambridge University Press, pp. 103-104,
1993. Sloane, N. J. A. Sequences A000302 /M3518
and A100831 in "The On-Line Encyclopedia
of Integer Sequences." Referenced on Wolfram|Alpha Cantor Dust
Cite this as:
Weisstein, Eric W. "Cantor Dust." From
MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/CantorDust.html
Subject classifications