TOPICS
Search

Cantor Dust


CantorDustFractal

Cantor dust is a fractal that can be constructed using string rewriting beginning with a cell [0] and iterating the rules

 {0->[0 0 0; 0 0 0; 0 0 0],1->[1 0 1; 0 0 0; 1 0 1]}.
(1)

The nth iteration of Cantor dust is implemented in the Wolfram Language as CantorMesh[n, 2].

Let N_n be the number of black boxes, L_n the length of a side of a box, and A_n the fractional area of black boxes after the nth iteration, then

N_n=4^n
(2)
L_n=3^(-n)
(3)
A_n=L_n^2N_n
(4)
=(4/9)^n.
(5)

The number of black squares after n=0, 1, 2, ... iterations is therefore 1, 4, 16, 64, 256, 1024, 4096, 16384, ... (OEIS A000302). The capacity dimension is therefore

d_(cap)=-lim_(n->infty)(lnN_n)/(lnL_n)
(6)
=log_34
(7)
=(2ln2)/(ln3)
(8)
=1.261859.
(9)

See also

Box Fractal, Cantor Set, Cantor Square Fractal, Haferman Carpet, Sierpiński Carpet, Sierpiński Sieve

Explore with Wolfram|Alpha

References

Broden, J.; Espinosa, M.; Nazareth, N.; and Voth, N. "Knots Inside Fractals." 5 Sep 2024. https://arxiv.org/abs/2409.03639.Dickau, R. M. "Cantor Dust." http://mathforum.org/advanced/robertd/cantor.html.Mandelbrot, B. B. The Fractal Geometry of Nature. New York: W. H. Freeman, p. 80, 1983.Ott, E. Chaos in Dynamical Systems. New York: Cambridge University Press, pp. 103-104, 1993.Sloane, N. J. A. Sequences A000302/M3518 and A100831 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Cantor Dust

Cite this as:

Weisstein, Eric W. "Cantor Dust." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CantorDust.html

Subject classifications