TOPICS
Search

Bloch Constant


Let F be the set of complex analytic functions f defined on an open region containing the set closure of the unit disk D={z:|z|<1} satisfying f(0)=0 and df/dz(0)=1. For each f in F, let b(f) be the supremum of all numbers r such that there is a subregion S in D on which f is one-to-one and such that f(S) contains a disk of radius r. In 1925, Bloch (Conway 1989) showed that b(f)>=1/72.

Define Bloch's constant by

 B=inf{b(f):f in F}.
(1)

Ahlfors and Grunsky (1937) derived

 1/4sqrt(3)<=B<1/(sqrt(1+sqrt(3)))(Gamma(1/3)Gamma((11)/(12)))/(Gamma(1/4)).
(2)

Bonk (1990) proved that B>=sqrt(3)/4+10^(-14), which was subsequently improved to B>=sqrt(3)/4+2×10^(-4) (Chen and Gauthier 1996; Xiong 1998; Finch 2003, p. 456).

Ahlfors and Grunsky (1937) also conjectured that the upper limit is actually the value of B,

B=1/(sqrt(1+sqrt(3)))(Gamma(1/3)Gamma((11)/(12)))/(Gamma(1/4))
(3)
=sqrt(pi)2^(1/4)(Gamma(1/3))/(Gamma(1/4))sqrt((Gamma((11)/(12)))/(Gamma(1/(12))))
(4)
=0.4718617...
(5)

(OEIS A085508; Le Lionnais 1983).


See also

Landau Constant

Explore with Wolfram|Alpha

References

Ahlfors, L. V. and Grunsky, H. "Über die Blochsche Konstante." Math. Zeit. 42, 671-673, 1937.Bonk, M. "On Bloch's Constant." Proc. Amer. Math. Soc. 110, 889-894, 1990.Chen, H. and Gauthier, P. M. "On Bloch's Constant." J. d'Analyse Math. 69, 275-291, 1996.Conway, J. B. Functions of One Complex Variable I, 2nd ed. New York: Springer-Verlag, 1989.Finch, S. R. "Bloch-Landau Constants." §7.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 456-459, 2003.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 25, 1983.Minda, C. D. "Bloch Constants." J. d'Analyse Math. 41, 54-84, 1982.Sloane, N. J. A. Sequence A085508 in "The On-Line Encyclopedia of Integer Sequences."Xiong, C. "Lower Bound of Bloch's Constant." Nanjing Daxue Xuebao Shuxue Bannian Kan 15, 174-179, 1998.

Referenced on Wolfram|Alpha

Bloch Constant

Cite this as:

Weisstein, Eric W. "Bloch Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BlochConstant.html

Subject classifications