TOPICS
Search

Beam Detector


BeamDetector

A "beam detector" for a given curve C is defined as a curve (or set of curves) through which every line tangent to or intersecting C passes. The shortest 1-arc beam detector, illustrated in the upper left figure, has length L_1=pi+2.

The shortest known 2-arc beam detector, illustrated in the right figure, has angles given by solving the simultaneous equations

 2costheta_1-sin(1/2theta_2)=0
(1)
 tan(1/2theta_1)cos(1/2theta_2)+sin(1/2theta_2)[sec^2(1/2theta_2)+1]=2.
(2)

These can be found analytically as

theta_1=2sin^(-1)r_1=1.2865
(3)
theta_2=2sin^(-1)r_2=1.1910,
(4)

where r_1 and r_2 are given by

r_1=(1280x^(10)-2816x^8+2160x^6-656x^4+55x^2+4)_4
(5)
r_2=(5x^5-6x^4-17x^3+10x^2+11x-6)_1,
(6)

with (P(x))_n denoting the nth root of the polynomial P(x) is the ordering of the Wolfram Language. The corresponding length is

L_2=2pi-2theta_1-theta_2+2tan(1/2theta_1)+sec(1/2theta_2)-cos(1/2theta_2)+tan(1/2theta_1)sin(1/2theta_2)
(7)
=4.8189264563....
(8)

A more complicated expression gives the shortest known 3-arc length L_3=4.799891547.... Finch defines

 L=inf_(n>=1)L_n
(9)

as the beam detection constant, or the trench diggers' constant. It is known that L>=pi.


Explore with Wolfram|Alpha

References

Croft, H. T.; Falconer, K. J.; and Guy, R. K. §A30 in Unsolved Problems in Geometry. New York: Springer-Verlag, 1991.Faber, V.; Mycielski, J.; and Pedersen, P. "On the Shortest Curve which Meets All Lines which Meet a Circle." Ann. Polon. Math. 44, 249-266, 1984.Faber, V. and Mycielski, J. "The Shortest Curve that Meets All Lines that Meet a Convex Body." Amer. Math. Monthly 93, 796-801, 1986.Finch, S. R. "Beam Detection Constant." §8.11 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 515-519, 2003.Makai, E. "On a Dual of Tarski's Plank Problem." In Diskrete Geometrie. 2 Kolloq., Inst. Math. Univ. Salzburg, 127-132, 1980.Stewart, I. "The Great Drain Robbery." Sci. Amer. 273, 206-207, Sep. 1995.Stewart, I. Sci. Amer. 273, 106, Dec. 1995.Stewart, I. Sci. Amer. 274, 125, Feb. 1996.

Referenced on Wolfram|Alpha

Beam Detector

Cite this as:

Weisstein, Eric W. "Beam Detector." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BeamDetector.html

Subject classifications