TOPICS
Search

Antiorthic Axis


The orthic axis of the excentral triangle, which is central line L_1 (Casey 1888, p. 177; Kimberling 1998, p. 150) and therefore has trilinear equation

 alpha+beta+gamma=0.

It is the trilinear polar of the incenter.

The line passes through Kimberling centers X_i for i=44, 513, 649, 650, 652, 654, 656, 657, 659, 661, 672, 770, 798, 822, 851, 896, 899, 910, 1155, 1491, 1575, 1635, 1755, 2173, 2182, 2183, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2237, 2238, 2239, 2240, 2243, 2244, 2245, 2246, 2247, 2252, 2253, 2254, 2265, 2272, 2290, 2312, 2313, 2314, 2315, 2348, 2483, 2484, 2503, 2511, 2515, 2516, 2522, 2526, 2578, 2579, 2590, 2591, 2600, 2610, 2624, 2630, 2631, 2635, 2637, 2641, 2642, 3000, and 3013.

Amazingly, the antiorthic axis is the perspectrix of all pairwise combinations of the excentral triangle, extangents triangle, Feuerbach triangle, and reference triangle (Weisstein, Dec. 6. 2004).

AntiorthicAxisRadicalLine

The antiorthic axis is the radical line of the coaxal systems (Apollonius circle, excircles radical circle, nine-point circle) and (Bevan circle, circumcircle).


See also

Central Line, Coaxal System, Orthic Axis

Explore with Wolfram|Alpha

References

Casey, J. A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., 1888.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.

Referenced on Wolfram|Alpha

Antiorthic Axis

Cite this as:

Weisstein, Eric W. "Antiorthic Axis." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AntiorthicAxis.html

Subject classifications